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ABSTRACT 

In this study, we investigate relative performance of various non-linear models against that of 
an autoregressive model in forecasting future inflation. We find that non-linear models have 
trivial forecast superiority over the univariate autoregressive model in terms of central forecast 
accuracy. They also perform poorly when their forecasts are measured against those of the 3 
variables VAR model. In addition, we also show that non-linear models cannot beat the random 
walk in terms of central forecast accuracy which is in line with the previous literature on 
Azerbaijan during the post-oil boom years. However, we also demonstrate that non-linear models 
still have clear forecast advantage over both linear and random walk models in predicting 
forecast density.    
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“Prediction is very difficult, especially about the future” 
Niels Bohr 

I. Introduction 

Forecasting is in the heart of any decision making process, especially when it deals with far 
future and when its consequences cannot be undone later. Central banks are one of the places 
where forecasting is undertaken as a routine task and exercised on daily basis. The reason for this 
is obvious – any effects of central bank decisions on the economy can only be observed with 
longer time lags. However, forecasting is not an easy exercise – it requires considerable amount 
of time and resources. Failure to correctly forecast economic developments also imposes 
reputation costs on central banks and wreaks havoc on their credibility. But success at 
forecasting also depends on the intrinsic predictability of future economic developments. That is, 
the question is whether future economic developments are predictable given information set 
available at present? 

In a very interesting paper, Hendry and Mizon (2013) discuss unpredictability in economic 
modeling and forecasting. They describe three important sources of unpredictability in economic 
analysis: intrinsic unpredictability, instance unpredictability and extrinsic unpredictability. They 
show that our workhorse forecast models (for instance, DSGE models) become unreliable when 
they are most needed. Edge and Gurkaynak (2010) demonstrate that DSGE models do not fare 
well in forecasting inflation during Great Moderation years. They show that no model is good at 
forecasting inflation – in fact, inflation become unforecastable during that period. This finding is 
in line with Stock and Watson (2007) results. They also show that despite significant decline in 
volatility during Great Moderation years, forecasting inflation has not become easier – its 
persistence has declined over time. Similarly, Atkenson and Ohanion (2001) find that since 1984, 
Phillips curve forecasts have lost their superiority against naïve inflation forecasting models. 
According to D’Agostino, Giannone and Surico (2006), the ability of relatively sophisticated 
models in predicting inflation and real activity in US has deteriorated remarkably during the 
Great Moderation period.  

In an inflation forecasting exercise Huseynov, Ahmadov and Adigozalov (2014) show that 
almost similar results hold for an oil exporting country, namely Azerbaijan. They demonstrate 
that despite considerable decline in economic volatility during post-oil boom years, naïve models 
have gained significant advantage over more complex ones. In fact, according to them, it is 
impossible to beat a random walk forecast for inflation regardless of how sophisticated models 
one employs. However, in their forecasting study, they mostly utilize linear models and assume 
no changes in economic dynamics during that period. In contrary to their study, we investigate 
inflation forecasting in post-oil boom years using non-linear methods. We assess the relative 
performance of non-linear models and examine whether they can better forecast inflation during 
the same period.   



 For forecasting exercise we estimate various regime change models encompassing threshold 
models, smooth transition models, Markov switching models and time varying parameter 
models. We utilize both univariate and multivariate version of aforementioned methods and 
compare their performance with our baseline autoregressive model.  

We use quarterly data and estimate our models for the period Q1 2003- Q4 2014. We find 
that for the post-oil boom period of Q1 2012-Q4 2014, non-linear models barely beat 
autoregressive model forecasts when they are judged with central forecast accuracy. The quality 
of their forecasts even fall inferior to mean forecasts generated by 3 variables VAR models. Most 
importantly, we also show that non-linear model cannot outperform naïve models forecasts, such 
as random walk forecasts, a finding that is in line with Huseynov, Ahmadov and Adigozalov 
(2014). They also find that it is very hard to beat random walk forecasts regardless of the degree 
of sophistication in models. That is, our results coupled with the evidences from the 
aforementioned study demonstrate that it is hard to explain inflation dynamics with different 
models at hand and in fact, inflation is unforecastable for this time period. However, we also find 
evidence that though non-linear models are not good at producing central forecast tendency, they 
can still be confidently used to give probability distributions to future outcomes of inflation.        

The structure of the paper is designed as follows: the Section II discusses data and 
forecasting methods employed in this study, Section III presents results from forecast 
comparison experiment, Section IV discusses probable implications and causes of the change in 
inflation process, and finally, Section V concludes.   

 

II. Data and Methodology 

In this paper, we draw on quarterly data on domestic CPI, real non-oil GDP and reserve 
money covering the period Q1 2003 – Q4 2014. Domestic CPI and GDP figures are collected 
from the State Statistical Committee’s Statistical Bulletins, while reserve money (in manat) is 
taken from the database of  Central Bank of Azerbaijan. We exclude the value added of the 
mining sector from the overall GDP to obtain non-oil GDP figures. Note that quarterly real GDP 
figures are calculated at 2005 constant prices. All variables are seasonally adjusted applying 
TRAMO-SEATS package and quarter-on-quarter changes of these variables are obtained using 
seasonally adjusted figures. 

In this paper, we employ univariate and multivariate (3 variables) non-linear time series 
methods and compare their forecast performance with that of our baseline autoregressive model, 
namely, an AR(2) process fitted to inflation. We estimate our models for the period Q1 2013 – 
Q4 2011 and keep the last 12 observations (Q1 2012 – Q4 2014) for the conduct of out-of-
sample forecast. We use the iterated forecasting approach and recursive scheme to carry out 
forecasting exercise for horizons h = {1, 2, 4, 6}. We measure central forecast accuracy of each 
model using Root Mean Squared Forecast Error (RMSFE) and calculate relative RMSFE against 



the baseline model. We also employ log predictive score to judge forecast accuracy of their 
predictive density against the baseline model. We choose the best lag order of each model based 
on Schwarz Information Criterion (SIC). 

 

Markov-switching models 

The first set of non-linear models that we employ is a Markov-switching (MS) model with 2 
separate regimes. We label the first regime as “low inflation regime” (regime 0) and the second 
one as “high inflation regime” (regime 1). Because we can determine which model parameter(s) 
to shift, we obtain various combinations of switching parameters, thus different specifications.   

As a univariate MS model, we will employ an autoregressive p order (MS AR(p)) process for 
inflation ty which can be specified as follows: 
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where 
tSµ is the regression constant ( 0µ and 1µ are the regression means for the first and the 

second regimes respectively), 
ptSi −,ρ  is the slope coefficient for the ith order regression term, 

tSσ

is the standard deviation, tε is a zero mean and unit variance shock, tS , Tt ,...,2,1= is Markov-
switching random variable taking value 1 at the regime 1 and value 0 at the regime 0. 

We will assume that the latent variable tS follows a two-state, first order Markov-switching 
process with the following transition matrix: 
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where the probability of switching from the regime 0 to the regime 0 is pSS tt === − )0|0Pr( 1  

and the probability of switching from the regime 1 to the regime 1 is qSS tt === − )1|1Pr( 1 . Note 
that in our specification transition probabilities are assumed to be time-invariant and constant 
over time. 

By determining which regression parameters to switch, we can obtain different specifications 
for the above regression equation (1). In the first specification we only allow intercept of the 



regression to shift but other parameters to be the same across two regimes. That is, only the 
equation (2) is valid for this specification, and other parameters of the regression remains the 
same across two regimes, i.e., iii ρρρ == 1,0,  for all autoregressive terms and σσσ == 10  for 

both regimes. Note that this specification is different from Hamilton (1989) where he defines a 
mean adjusted autoregressive process as follows: 
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Although the equation (5) is defined for 2 regimes, due to its autoregressive nature one needs to 
take into account 12 +p parameter combinations. Hamilton (1994) shows (chapter 22) how to re-
write this specification and re-define transition matrix P  in terms of 12 +p  regimes. However, our 
first specification with 2 regimes allows only 2 different parameter combinations in contrary to 
Hamilton (1989), so we do not need to re-define the transition matrix.  

In the second specification for )( pAR process, we assume that only intercept and volatility 
are changing across regimes. In other words, we assume that equations (2) and (4) applies to the 
second specification, but autoregressive coefficients remain constant, i.e., iii ρρρ == 1,0,  for all 

lagged terms. Note that as in the previous specification with two-state Markov-switching 
regimes, we need to take into account 2 different parameter combinations despite the 
autoregressive nature of the process. 

In the third specification, we allow all parameters to shift across 2 regimes. Because of the 
autoregressive nature of the process and the definition of autoregressive coefficients, we need to 
take into account 12 +p parameter combinations. Therefore, we transform the two-state transition 
matrix P  in equation (5) into a new transition matrix with 12 +p different regimes. Note that one 
can sidestep this complication by defining the autoregressive terms as follows: 
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 In addition to our univariate AR specifications, we also model non-oil output, reserve money 

and inflation by employing pth order VAR specification with a two-state Markov-switching 
process as follows: 
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where tY is a 3x1 vector, 
tSµ is a regime dependent mean vector, iA  is a corresponding 

autoregressive coefficient matrix for the i period lagged vector term itY −  and 
tSΩ is a regime 

dependent variance-covariance matrix. 

In the VAR framework, we prepare inflation forecasts using two different specifications:  (i) 
in the first specification, we only allow structural breaks (or regime changes) in the mean of the 



regression and (ii) in the second specification, we allow joint shifts in the mean as well as in the 
variance-covariance matrix of the regression. Note that in both specifications autoregressive 
coefficient matrix do not change across regimes.  

In all of our AR and VAR specifications, we apply Bayesian methods and Gibbs sampling 
algorithm to obtain posterior distribution of model parameters and forecast density. We use 
Minnesota type priors for coefficient vectors. For )( pAR specifications, we set the prior mean for 
the coefficient of the first lag to 0.5 and for other lags prior values are set to 0.  The 
hyperparameters of priors are set to values mostly employed in the literature (Canova (2007), 
p.380) ( ) 1,5.0,2.0 321 === λλλ VARfor except 104 =λ . For VAR specifications, the same priors 
are employed (see Appendix for more details). 

 

Threshold and smooth transition models 

The second set of non-linear models that we employ in our forecasting exercise is threshold 
and smooth transition models. As in MS specifications, we employ these models to describe 2 
different regimes in the economy. Parameter switches across different regimes are governed by a 
threshold variable. In these models, though threshold variable is known, a difficulty emerges due 
to an unobserved threshold level. In our exercises, the threshold variable is a lagged term of the 
variable in AR or VAR specifications – models that are also labeled as self-exciting threshold 
models. 

A two-regime threshold autoregressive process ( )( pAR ) can be described as follows: 
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where d is a positive integer and c is a threshold value. As in the case of the MS AR(p) process, 
we define three specifications (i) only regression intercept shifts (ii) intercept and volatility shift 
(iii) all regression parameters shift. Note that equation (9) depicts shifts in all parameters of the 
regression (third specification) and other specifications can be obtained by proper adjustments in 
the specification above. 

A self-exciting threshold VAR model can be expressed as follows: 
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where dtiY −, is a d period lagged ith variable of the vector tY .  

In the smooth transition VAR model, the specification (11) also applies, but now the state 
vector tS is a continuous variable given by: 
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These models can also be estimated using classical methods (see, for instance, Tsay (1989, 
1998), Terasvirta (1994)), for example, non-linear OLS or Maximum Likelihood methods. 
However, we prefer to apply Bayesian methods (see Chen and Lee (1995), Chen (1998)) using 
both Gibbs and Metropolis-Hasting algorithms (for more details, see the Appendix).  

We use the same priors for coefficient vectors in our AR and VAR specifications as in the 
MS case. Besides, we draw a candidate threshold value from )1,0(~,2/1 Ncc oldnew ξξΨ+= in 
the Metropolis-Hastings step. We choose the scaling factorΨ to ensure that the acceptance rate 
remains between 15% and 55%. The priors for mean and variance of the threshold value are 
obtained from a training sample undertaken with the first twelve observations. In our exercises, 
we assume a flat prior for delay parameter d, but restrict its maximum value to 4. In addition, for 
smooth transition VAR, we assume a gamma distribution forγ , its hyperparameters being set to 
1.25 and 1 respectively.  

 

Time varying parameter models  

The third set of non-linear models that we utilize in our forecasting exercise is a time varying 
parameter (TVP) AR model with stochastic volatility. Huseynov, Ahmadov and Adigozalov 
(2014) employ TVP-VAR models in their forecasting exercise. But due to large number of 
variables in their TVP-VAR (30 variables), they opt to use forgetting factor algorithm proposed 
by Koop and Korobilis (2013) in their exercise. Here, as in we will use Bayesian methods (see, 
for instance, Primiceri (2004), Barnett, et al (2012), Baumeister, et al (2010)) and MCMC 
algorithm in our TVP-AR model. 

A TVP-AR process with stochastic volatility can be expressed as follows: 
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Letting },{ ,titt ρµθ = AR parameters evolve as random walks: 

ttt ζθθ += −1  (15) 
where ),0(~ QNtζ . The variance of the error term evolves as: 
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We can estimate AR model using Bayesian methods and applying Carter-Kohn and Metropolis-
Hastings algorithm (see Blake and Mumtaz (2012)). 

 

III. Forecast Comparisions 

We measure forecast accuracy of each model using Root Mean Squared Forecast Error 
(RMSFE) and log predictive score. By construction, RMSFE shows the central forecast accuracy 
of the model and defined as follows: 
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where hN is the number of time periods h-period ahead forecast is evaluated , 1+tπ denotes the 

actual value of quarterly inflation at the forecast evaluation period t+1, and hm
t

,
1+π h-period ahead 

forecast (made h periods in the past) for model m. The relative forecasting strength of each 
model for h period ahead forecast is calculated based on the relative RMSFE using the AR (2) 
specification for inflation as our baseline models: 
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where b denotes baseline model. The model with superior forecasting power should possess a 
relative RMSFE value less than unity.7 

The second criterion for forecast accuracy that we appeal to is log predictive score. We apply 
it to compare the quality of probabilistic forecasts by giving a numerical value employing the 
whole predictive distribution and the event that realizes. Based on the joint predictive density 
function of hTtt yyy +++ ,...,, 21 , it is expressed as: 

7 There are more formal methods to test for equal forecast accuracy of different models or forecast encompassing, either nested 
or non-nested models under different forecasting schemes (see for example, Deibold and Mariano (1995), Giacomini and White 
(2006), Clark and McCracken (2001), McCracken (2004), etc.). 
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We report the difference between the log score of the model m and our baseline model. If the 
difference is positive, then this implies that the model m outperforms the baseline model in terms 
of predictive density accuracy.   

Table 1. Relative RMSFE and difference of log score for different models (baseline AR(2)) 

 RMSFE Log score 
 1Q 2Q 4Q 6Q 1Q 2Q 4Q 6Q 

          
TVP-AR all 0.875 0.874 0.873 0.956 0.194 0.148 0.050 0.009 

          

MS-AR 
const 1.109 1.132 1.147 1.130 0.875 0.820 0.789 0.714 

const+vol 0.975 0.970 0.970 1.024 0.990 0.969 1.021 0.914 
all 0.955 0.955 1.029 1.084 0.980 0.980 0.925 0.859 

          

MS-VAR const 1.343 1.086 1.097 1.225 -0.762 -0.870 -1.261 -1.591 
const+vol 0.975 0.799 0.845 0.886 -1.245 1.337 1.803 -2.175 

          

TAR 
const 0.951 0.992 1.117 1.066 0.076 0.056 -0.009 -0.002 

const+vol 0.950 0.990 1.117 1.109 0.317 0.279 0.110 0.124 
all 1.001 0.992 1.098 1.089 0.324 0.286 0.098 -0.023 

          
TVAR all 0.969 0.929 0.904 0.931 0.441 0.524 0.328 0.125 

          
STVAR all 1.541 1.388 1.383 1.317 -1.134 -1.038 -1.051 -1.039 

          
Note: MS-(V)AR denotes Markov-switching (Vector)Autoregressive models. “const” specification allows switches 
only in intercept of regression, “const + vol” switches both in intercept and volatility, whereas “all” specifies 
switches in all parameters of the regression. Similarly, “TAR” is an acronym for Threshold Autoregressive (AR) 
models, “TVP-AR” is time varying parameter AR process, “STVAR” denotes smooth transition VAR models. 

Table 1 reports the relative RMSFE and the difference of the log scores of the models with 
respect to our baseline model AR(2). According to the relative RMSFE criteria, univariate 
Markov-switching and threshold models (“all” and “const+vol” specifications) demonstrate 
some advantage over the baseline model in predicting inflation for 1 and 2 quarters ahead 
forecast horizon.  However, the gain in forecast accuracy for those models is not that substantial 
and hovers around 3%-5%. For longer horizons those models loss their superiority in terms of 
forecast accuracy against the baseline model. In contrary, it seems that our univariate TVP-AR 
specification with stochastic volatility which assumes time varying parameter for all regression 
parameters do perform well in comparison to the baseline model. It exhibits relative gain in 
forecast accuracy around 13% for all forecast horizons except for 6 quarters ahead where its 
superiority is around 5%.    

In addition, it seems that the first specification (“const”) of both MS-AR and TAR models 
where we only allow intercepts of regression to switch, but keep other parameters of the 



regression the same across regimes is inferior to the baseline model. Less accuracy of the first 
specification (“const”) is also applicable for multivariate MS-VAR specification and almost true 
regardless of the forecast horizon.  

Regarding multivariate models, MS-VAR (“const+vol” specification) and TVAR (“all” 
specification) model forecasts can beat the baseline model forecasts for all forecast horizons. In 
the MS-VAR model the maximum gain in forecast accuracy is nearly 21% (for 2 quarters ahead) 
while in TVAR model it is around 10% (for 4 quarters ahead). However, this cannot be applied 
to the STVAR model forecasts which fall inferior to those of the baseline model for all forecast 
horizons. 

Relative RMSFE results helps to reveal central tendency in forecast accuracy of each model 
in comparison to the baseline model. Beside that we also appeal to difference of log scores to 
measure predictive density accuracy of each model. Table 1 shows that all specifications of 
univariate MS-AR models possess clear advantage over the baseline model in terms of this 
forecast accuracy criterion. All specifications of the univariate TAR as well as TVP-AR models 
also demonstrate some advantage over the baseline model.  

Except the TVAR model, all multivariate models fare worse in terms of density forecast 
accuracy relative to the baseline model. Among them, multivariate Markov-switching models are 
the worst performers (the worst is “const” specification) according to this criterion. 

Overall, though univariate regime switching models do not exhibit substantial gains in terms 
of central forecast accuracy, their superiority in terms of predictive density accuracy is 
significantly larger. It seems that univariate TVP-AR model performs well in terms of both 
central forecast and predictive density accuracy. In general, multivariate models are not good at 
predictive density accuracy (except the TVAR model) and they also do not possess significant 
advantage in terms of central forecast accuracy except the second specification of MS-VAR. The 
finding that non-linear models generate noisier central forecasts but demonstrate clear advantage 
over linear models is in line with Alessandri and Mumtaz (2013). They also show that non-linear 
models clearly outperform linear ones in predicting distributions, but generate inferior central 
forecasts.        

 

IV. Discussion 

In the previous section, we demonstrate that non-linear models do possess clear advantage in 
predicting distributions for the forecast exercise period Q1 2011 - Q4 2014. We also collect 
evidence that some univariate and multivariate models outperform the baseline model in terms of 
central forecast accuracy.  



    It is also interesting to assess forecast performance of non-linear models against a multivariate 
linear model. For this comparison, we estimate a VAR specification using classical regression 
methods with the same 3 variables also being employed in the non-linear multivariate models. 
Table 2 in the Appendix A summarizes the results for this exercise. Clearly, only one non-linear 
model, namely TVP-AR model can barely outperform VAR central forecasts. No other 
univariate or multivariate models can even enjoy a minor advantage in forecast accuracy against 
the VAR model forecasts. However, as in the case of our univariate baseline model, non-linear 
models demonstrate clear superiority in terms of predictive density against the baseline VAR 
model. 

    For almost the same period, Huseynov, Ahmadov and Adigozalov (2014) show that it is 
difficult to beat a random walk or naïve forecast employing relatively sophisticated models. 
Table 3 in the Appendix A displays the results where we compare forecast performances of non-
linear models against the random walk forecast. Obviously, no non-linear model can outperform 
random walk forecast for any forecast horizon when central tendency is used as an accuracy 
measure. This finding is not surprising given their minor advantage over the linear models. 
However, non-linear models do in fact deliver superior performance compared to the random 
walk forecast in predicting distributions. 

Figure 1. Regimes from TAR model    Figure 2. Regimes from MS-AR model  

  

Note: Figure 1 depicts 2 different regimes obtained from TAR model specification with constant and volatility 
switching, but other paramers remaining the same across regimes. TAR model regimes takes 2 different discrete 
values. Regime 0 (low inflation regime) expresses the first regime and takes the value 0 whereas regime 1 (high 
inflation regime) defines the second regime and takes the value 1. Similarly, Figure 2 depicts filtered probabilities 
obtained from Markov-switching model with 2 regimes allowing only constant and volatility switching. Filtered 
probabilities display the probability of the regime 1 (high inflation regime). Because there are only 2 regimes, the 
probabilities of the regime 0 can be obtained by deducting filtered probabilities from one. 
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Therefore, as Huseynov, Ahmadov and Adigozalov (2014), we also find that random walk 
forecasts are very difficult to beat for that period. Huseynov, Ahmadov and Adigozalov (2014) 
show that there might occur some structural changes in the inflation or economic dynamics in the 
country during the years of 2003-2014. We also demonstrate that inflation dynamics show some 
traces of changes over the time period that we investigate. This pattern is clearly captured by our 
MS-AR or TAR specifications (Figures 1-2). Similarly, the aforementioned study also finds 
strong evidence of the probable regime changes during the same period. However, as our 
exercise with non-linear models also put forward capturing this change is not sufficient to gain 
forecast advantage over the random walk forecasts. When we combine our finding with those of 
Huseynov, Ahmadov and Adigozalov (2014) it seems that inflation become unforecastable for 
that period for linear as well as non-linear models when central tendency is utilized as an 
accuracy measure. But the good news is that non-linear models can exhibit clear advantage over 
random walk as well as linear model forecasts in predicting distributions. That is, even it is 
difficult to forecast central tendency in inflation process for quarters ahead, one can still 
confidently attach a non-trivial probability to future realizations of inflation using non-linear 
models that we develop here.  

 

V. Conclusion 

In this study, we estimate various non-linear models accounting for two different regimes and 
compare their forecasting performance with that of linear models and random walk forecasts. We 
find that non-linear models produce noisier mean forecasts and experience hard times in beating 
linear model forecasts when central forecast tendency is used as an accuracy measure. They even 
lose to the forecasts generated by naïve models such as random walk or no-change forecasts. 
This finding is in line with Huseynov, Ahmadov and Adigozalov (2014) who also show that 
random walk forecasts are hard to beat for the similar time frame. Though non-linear models 
generate noisier central forecasts they outperform linear model and random walk forecasts in 
predicting distributions. That is, though non-linear models are not good at predicting central 
forecast tendency, they can still be used confidently to attach a non-trivial probability to future 
inflation outcomes. 
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APPENDIX A: Tables 

Table 2. Relative RMSFE and difference of log scores for different models (baseline VAR(2)) 

 RMSFE Log score 
 1Q 2Q 4Q 6Q 1Q 2Q 4Q 6Q 

          
TVP-AR all 0.993 1.025 0.989 0.966 0.172 0.052 0.147 0.115 

          

MS-AR 
const 1.258 1.328 1.299 1.142 0.853 1.328 1.299 1.142 

const+vol 1.106 1.137 1.099 1.035 0.968 0.873 1.126 1.038 
all 1.083 1.120 1.165 1.095 0.958 0.880 1.030 0.983 

          

MS-VAR const 1.523 1.274 1.243 1.238 -1.267 -1.433 -1.699 -2.051 
const+vol 1.106 0.937 0.958 0.895 -0.783 -0.966 -1.157 -1.470 

          

TAR 
const 1.136 1.163 1.244 1.101 0.055 -0.041 0.095 0.122 

const+vol 1.078 1.161 1.266 1.120 0.295 0.183 0.214 0.137 
all 1.079 1.163 1.266 1.078 0.302 0.190 0.202 0.101 

          
TVAR all 1.099 1.090 1.024 0.941 0.420 0.428 0.432 0.250 

          
STVAR all 1.748 1.628 1.566 1.331 -1.155 -1.134 -0.947 -0.915 

          
Note: MS-(V)AR denotes Markov-switching (Vector)Autoregressive models. “const” specification allows switches 
only in intercept of regression, “const + vol” switches both in intercept and volatility, whereas “all” specifies 
switches in all parameters of the regression. Similarly, “TAR” is an acronym for Threshold Autoregressive (AR) 
models, “TVP-AR” is time varying parameter AR process, “STVAR” denotes smooth transition VAR models. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Relative RMSFE and difference of log scores for different models (baseline RW) 

 RMSFE Log score 
 1Q 2Q 4Q 6Q 1Q 2Q 4Q 6Q 

          
TVP-AR all 1.688 1.677 1.548 2.342 0.263 -0.045 -0.258 -0.311 

          

MS-AR 
const 2.139 2.171 2.033 2.768 0.944 0.627 0.488 0.412 

const+vol 1.881 1.859 1.720 2.508 1.059 0.777 0.720 0.612 
all 1.842 1.832 1.824 2.654 1.049 0.783 0.624 0.556 

          

MS-VAR const 2.589 2.083 1.945 2.999 -1.176 -1.529 -2.105 -2.477 
const+vol 1.880 1.533 1.498 2.169 -0.693 -1.063 -1.563 -1.893 

          

TAR 
const 1.931 1.901 1.946 2.667 0.146 -0.137 -0.311 -0.304 

const+vol 1.833 1.899 1.981 2.715 0.386 0.086 -0.191 -0.290 
all 1.834 1.902 1.981 2.612 0.393 0.093 -0.204 -0.325 

          
TVAR all 1.869 1.782 1.602 2.280 0.510 0.331 0.026 -0.177 

          
STVAR all 2.972 2.662 2.451 3.226 -1.065 -1.230 -1.353 -1.342 

          
Note: MS-(V)AR denotes Markov-switching (Vector)Autoregressive models. “const” specification allows switches 
only in intercept of regression, “const + vol” switches both in intercept and volatility, whereas “all” specifies 
switches in all parameters of the regression. Similarly, “TAR” is an acronym for Threshold Autoregressive (AR) 
models, “TVP-AR” is time varying parameter AR process, “STVAR” denotes smooth transition VAR models. 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX B: Markov-switching models 

Consider an MS AR model: 

tS
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,  (B-1) 

where tS follows a two-state Markov chain. Collecting },...,,,{ ,,2,1 21 ptttt SpSSS −−−
= ρρρµθ as the 

Gibbs-algorithm is cycled through the following steps: 

1. Given starting values for AR parameters and variance as well as transition probabilities, the 
latent state vector tS  is obtained using multi-move Gibbs sampling drawn from 

),,,,...,,,,~|( ,,2,1 qpYSf
ttttt SSpSSSTT σρρρµ


 where ],...,,[~

21 TT SSSS =  and ],...,,[~
21 TT YYYY =  

. Kim and Nelson (1999, Chapter 9) show that the Markov property of the state variable 
implies that  

∏
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 (B-2) 

This density can be simulated in two steps: 
(a) Run Hamilton (1989) filter to get TtYSf Tt ...,3,2,1),~|( =  and save them. The last 

iteration of the filter provides us with )~|( TT YSf  from which TS  is generated. 

(b) To generate tS conditional on TY~ and 1,...,2,1,1 −−=+ TTtSt , we use the following result:     

)~|()|()~|( 1 ttstTt YSfSSfYSf +∝  (B-3) 

where )|( 1 st SSf + is a transition probability, and )~|( tt YSf has been saved from step (a).  

Kim and Nelson(1999) show that one can sample tS from (B-3) as follows:  

(i) first, calculate )~,|1Pr( 1 Ttt YSS += in the following way: 
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+
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(B-4) 

(ii) generate a random number from a uniform distribution. If the generated number is 
less than or equal to the calculated value of )~,|1Pr( 1 Ttt YSS += , set 1=tS . Otherwise, 
set it to 0. 

2. Conditional on TS~ , transition probabilities p and q are independent of the data set. Using beta 
distributions as conjugate priors for transition probabilities, Kim and Nelson (1999, Chapter 
9) show how to draw transition probabilities from posterior beta distribution. Given TS~  



vector from the previous step, draw transition probabilities from two independent beta 
distributions: 

),(~~| 01010000 nunubetaSp T ++  (B-5) 

),(~~| 10101111 nunubetaSq T ++  (B-6) 
where iju are hyperparameters of the priors and ijn refers to transition from state i to j, which can 

be easily counted given ],...,,[~
21 TT SSSS = . 

3. Conditional on θ , TS~  and TY~ , sample 2
0σ  and 2

1σ from inverted Gamma distribution. Recall 

that )1(2
0

2
tS hS

t
+= σσ  and )1(2

0
2
1 h+= σσ . First, one can generate 2

0σ  conditional on h and 

then generate hh += 1~
conditional on 2

0σ .  

One can draw variances from posterior distribution as follows: 

(i) To generate 2
0σ conditional on h , divide both sides of equation (A-1) by )1( thS+ . 

Given an inverted Gamma distribution as a conjugate prior for 2
0σ , the posterior 

distribution for 2
0σ takes the form: 

 )
2

,
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(~~,~,,| 112
0

δνθσ IGYSh TT  (B-7) 

where T+= 01 νν , **
01 'ee+= δδ , 0ν  and 0δ  are respective priors from Inverted 

Gamma distribution, T is the sample size and *e is regression residuals calculated 
from adjusted equation (B-1). 

(ii) To generate hh += 1~
 conditional on 2

0σ , divide both sides of the equation (B-1) by 

0σ . Given a conjugate prior for h~ , the posterior distribution is as follows: 
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,
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where 123 T+=νν , ****

23 'ee+= δδ ,  2ν  and 2δ  are respective priors from Inverted 

Gamma distribution, 1T is the cardinality of the set }1:{1 == tStN . and **e is 

regression residuals calculated from adjusted equation (B-1) for the values of ty for 

which 1=tS .  

Once hh += 1~
is generated from the above posterior distribution 2

1σ is calculated by 

)1(2
0

2
1 h+= σσ .  



4. Conditional on TS~ , TY~ , 2
0σ  and 2

1σ , sample θ from posterior distribution as follows: 

(i) First, divide both sides of the equation (B-1) by
tSσ  . 

(ii) Assuming Minnesota priors for coefficient vector, draw coefficient vector from 
normal distribution: 

),(~~,~,,| 11
2
1

2
0 BbNYS TTσσθ  (B-9) 

 
where  

)()( 0
1

0
11

01 YXbBXXBb ′+′+= −−−  (B-10) 
11

01 )( −− ′+= XXBB  (B-11) 
 
where Y is 1×T vector including left hand side (LHS) variable ty and X is a )1(2 +× pT  

matrix including p lagged terms of LHS variable, their elementwise multiplication with TS~ , a 

vector of ones and TS~ , 0b is the mean and 0B is the variance-covariance of the prior 
distribution respectively. Recall that because of our specification for autoregressive terms, 
one needs to take lags of TS~ vector and then implement elementwise multiplication. 
 
Note that the above algorithm is designed for our third specification allowing all parameters 

of the regression to switch across regimes. For the first and second specification, one needs to 
make minor adjustments to this algorithm accordingly.  

Recall that in our third specification, we need to take into account 12 +p  parameter 
combinations. Thus, we transform transition matrix P in equation (5) into 11 22 ++ × pp matrix and 
run Hamilton (1989) filter in the step 1 (a) and obtain )~|1( Tt YSf =  by summing respective rows 
(in our case, even rows) of the output from Hamilton (1989) filter.  

 
The Gibbs algorithm for MS VAR models is also similar to that of MS AR algorithm, except 

here one works with vector of variables rather than a single variable. One can refer to Krolzig 
(1997, Chapters 2, 8, 9) and Canova (2007, Chapter 11) for more details.  

 
 
 
 
 
 
 
 
 



APPENDIX C: Threshold models 

Consider a threshold AR model: 
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where )(⋅I is an indicator function. Note that in our STAR model )
))(exp(1
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Let’s collect regression parameters into a vector },...,,,,,...,,,{ 1,1,21,110,0,20,10 pp ρρρµρρρµθ = . 

Applying Bayesian methods, one can apply Gibbs and Metropolis-Hastings algorithms 
jointly to sample regression parameters from posterior distributions: 

1. Conditional on 1−jc , construct tS  using equations (9) for TAR model. 

2. Given from the previous step, derive OLS version of parameter vector OLSθ̂  

3. Conditional on c , 0σ and 1σ , draw θ  from normal distribution.  

4. Conditional onθ and c , draw 0σ and 1σ from inverted Gamma distribution. 

5. Given jθ , j
0σ and j

1σ ,  jc  is generated by 

cc
jj ucc σ+= −1  

6. If the ratio 
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 is greater than a 

random variable generated from the uniform distribution over the unit interval then the 
draw is accepted – set jj cc =−1 and proceed to step 1. Otherwise, the draw is discarded – 
set 11 −− = jj cc and proceed to step 1. 

 

 

 


