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Abstract 

In alignment with the Central Bank’s objective to maintain price stability in the economy, this 

paper is dedicated to forecasting short-term inflation in Azerbaijan with various time series 

models including Bayesian Vector Autoregressive (BVAR) technique, which, alleviates 

overparameterization problem. We have also utilized autoregressive (AR) and standard VAR 

as benchmark models to make a comparison of forecast errors derived from out-of-sample 

analysis with those of BVAR model. For BVAR estimations, Litterman, Minnesota and Sims-

Zha Normal Wishart (NW) prior have been employed. The monthly estimation period covers 

the date range from 2003M1 to 2019M6 and by using the expanding window strategy, we 

extended the data window to 24 months and forecasted the subsequent 24 months. We have 

carried out analysis in two stages: economic category-specific and incremental modelling. In a 

category-specific analysis, we developed 5 models for VAR and BVAR priors, each focusing 

on various sectors of the economy. We then applied an incremental approach, where variables 

from the earlier category-specific models were added step by step, enabling us to evaluate how 

the forecast performance changed as additional variables were included in the models. The 

study analyzed different frameworks for the assessment of the final forecast with the objective 

of improving the forecast accuracy. Overall, the examination of different models and estimation 

techniques demonstrates that each model and estimation technique have a significant 

contribution to our suggested four different strategies of forecast assessment. 
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1. Introduction

Inflation-targeting monetary framework employed by central banks have been placing 

great emphasis on inflation forecasting. Accurate projections of inflation trends for price stability 

and financial stability are critical because monetary policy decisions affect the entire economy 

and financial sector. As a result, the past decade has witnessed the adoption of high-end 

econometrics estimation techniques such as BVAR models by central banks to improve 

forecasting accuracy. Traditional multivariate time series estimation methods have certain 

restrictions on employing over five variable frameworks that may yield biased inference due to 

over-parametrization and dimensionality problems. Bayesian VAR is a powerful technique to 

analyze and forecast dynamic relationships among macroeconomic variables. BVAR allows the 

integration of prior beliefs on the parameters and posterior information. This prior information 

can be based on historical data, economic theory—such as the Taylor Rule or the Phillips 

Curve—and expert opinion, all of which guide the model's assumptions and can lead to different 

outcomes. However, this study does not focus on the assessment of prior information from 

different sources. Prior beliefs can be utilized to limit the use of the less important variables and 

elevate the strength of relevant variables. Thus, Bayesian VAR offers a solution to potential 

dimensionality and over-parametrization problems. 

The Central Bank of Azerbaijan Republic (CBAR) mainly targets 12-month inflation and 

forecasts for the next two years. That is why we have analyzed aggregate annual inflation 

employing different models.  Various patterns of inflation dynamics in Azerbaijan were observed 

throughout this period. From 2004 to 2007, the headline inflation rate escalated to a double-

digit and average annual inflation hiked to 10.3 per cent. The reason is explained by the demand 

pressures, driven mostly by the increase in fiscal expenditure due to a surge in oil windfall, high 

food inflation and a spike in administrative prices. Between 2009 and 2015, the economy 

enjoyed a stable period with a low inflation rate arising from stability in the international market. 

However, a substantial drop in oil prices at the end of 2014 caused a deficit in the current 

account, which in turn entailed the devaluation of the national currency in 2015. Reduced oil 

revenues have had a lagged effect on the economy. If average inflation was 3.3% between the 

2009-2014 boom period, from 2015 to 2017, after devaluation episodes of local currency, 

inflation averaged around 9.8%. From the year 2018 to the end of 2020, the economy was 

stable again, with an average inflation of 2.6%. The aftermath of COVID-19 repercussions on 

inflation became apparent from the beginning of 2021 in the fields from the transport to 

agricultural products. Upon easing out of the COVID-19 aftermath, the global economy 

encountered the Russia-Ukraine war that disrupted the stability of the global economies. 

Azerbaijan imports higher inflation from main trade partners, which is inherent to a small 

economy. Starting from the end of 2022, inflation cooled due to stabilization in the global arena. 

Average inflation rated 10.7 percent from 2021 to the first half of 2023. Figure 1 visually 

highlights the fluctuations and patterns related to inflation dynamics. 

Recently, CBAR has employed the VAR model to forecast two quarters for the short-

term horizon and the Quarterly Projection Model (QPM) to forecast two years for the medium-

term horizon. To forecast the medium range, a short-term forecast outcome is needed. Since 

short and medium-term forecasts serve as the foundation for monetary policy decisions of the 

CBAR, it is crucial to develop inflation forecast models to better understand future patterns of 

inflation. The paper analyzes the forecasting performance with AR, VAR, and BVAR estimation 
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methods based on five models plus one optimal model that includes only a high-performing 

variable set. The monthly data used in the paper covers the period from 2003M1 to 2023M6. 

To compare the results of the models, we have used the pseudo-out-of-sample method using 

an expanding window strategy. 

 Figure 1: Inflation dynamics in Azerbaijan 

 
    Source: State Statistical Committee of the Republic of Azerbaijan (SSCRA) 

Previously, limited number of studies have analyzed inflation rate for Azerbaijan with 

different estimation methods and models other than Bayesian VAR. For instance, Rahimov et 

al. (2016) explored determinants of headline inflation in Azerbaijan by utilizing the VAR model 

with quarterly data from 2003Q1 to 2015Q1. Their findings from impulse response analysis 

suggest that trade partners’ inflation, fiscal policy, exchange rate and own shocks of inflation 

significantly explain changes in inflation. Mukhtarov et al. (2019) investigated the cointegration 

of inflation, oil price and exchange rate in Azerbaijan by employing the VECM model between 

1995 and 2017. They found a statistically significant long-run relationship among those 

variables. They also emphasized the presence of oil price transmission into inflation through 

exchange rates. Additionally, the authors found that a 1% change in oil price increases inflation 

by 0.58%. Rahimov (2020) studied the determinants of inflation in Azerbaijan with the VAR 

model. The author found that the world food price index (WFPI), M2 money aggregate, nominal 

effective exchange rate (NEER), CPI in trading partner countries, real GDP growth, 

manufacturing PPI, non-oil tax and agricultural price index are the main determinants of inflation 

in Azerbaijan. In another research paper, a factor-augmented vector autoregressive (FAVAR) 

model was built by Ahmadov et al. (2020) to forecast inflation and output in Azerbaijan. FAVAR 

was employed to diminish the dimensionality problem since 77 variables were included in the 

model, also it mitigates omitted variable bias. However, the inference indicated that the 

univariate model outperforms the FAVAR model. The researchers found that a possible reason 

was the availability of short sample periods of data. Huseynov et al. (2014) studied forecasting 

performance of different models by using an out-of-sample method during post oil-boom period. 
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They estimated AR, Bayesian AR, AR-GARCH, VAR, BVAR, FAVAR and TVP-VAR starting 

from 2003-January to 2006-October. As a result, the naïve model showed superior performance 

among other sophisticated multivariate models.   

Huseynov et al. (2014) have analyzed the forecasting ability of BVAR Litterman’s prior 

previously with a short-term period of data. However, we have a large data sample, and we 

deeply focus on analyzing different models with Bayesian VAR priors. We found optimal lag 

and hyperparameters for mitigating shrinkage of dimensionality, comparing forecast errors for 

further periods with out-of-sample forecasting and expanding window strategy by taking all 

variables' log differences. The purpose was to obtain the stationary variables for the time series 

estimation techniques. Moreover, CBAR employs the VAR model for monthly short-term 

forecasting and makes use of the QPM model for medium-term forecasting on a quarterly basis. 

We employ monthly data for all models for a 24-month forecast horizon.   

This paper introduced models in two structures: a category-based and incremental set 

of models. Model 1 acts as a base model and includes seven variables, and we subsequently 

add category-specific variables into models up to Model 5 to estimate the effect of those 

variables on inflation. Incremental models progressively integrate variables from preceding 

models, establishing a cumulative structure wherein each subsequent model includes the 

variables from the prior model along with additional variables specific to that model. Variables 

for both category-based and incremental model sets are described in Table 1 and Table 2, 

respectively. 

Moreover, this paper introduced several methods for getting the final forecast outcome 

out of different models and estimation methods. The first approach includes forecasting all 

models and then selecting the same time forecast outcome based on the minimum root mean 

square forecast error (RMSFE) value among the models at the same time. The second 

approach is to select models based on the model with an average minimum RMSFE for 12 or 

24 months ahead, depending on the purpose. The third approach incorporates a weighted 

combination of models wherein all models are forecasted monthly. Then, the forecast results 

of all models are multiplied by the relevant point of time weight of the models. The last approach 

is to forecast all models and then take a simple average of the monthly forecasts. 

In general, the forecasting performance of the models in various estimation methods 

slightly differs from each other. If the first approach is utilized, AR, Litterman Model 2, Optimal 

model with Sims-Zha prior, and VAR estimation technique perform well in the first 12 months. 

If the second approach is utilized, the least prediction errors of average 12 months ahead, 

optimal model with Sims-Zha Normal Wishart prior slightly outpaces the average of the forecast 

horizon of the models. The third approach is the composition of forecast outcomes of all models 

and estimation techniques based on relative weights of forecast performance. The last 

approach involves calculating the simple arithmetic mean of the point forecasts derived from 

various models and estimation techniques. 

The rest of the paper is structured as follows: Section 2 introduces Literature on 

Bayesian VAR used for inflation forecasting, Section 3 discusses Data and Methodology, 

Section 4 provides results of estimation and forecast performance of the different models, 

Section 5 concludes the study together with implications, limitations and leaving 
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recommendations for further studies. In addition, supplementary materials can be found in the 

Appendix. 

2. Literature review

Most recently, BVAR models have been used by macroeconomic institutions as the main 

model to predict short-term inflation with solid accuracy. However, different models and 

estimation methods may yield distinct inferences. We have enumerated a comprehensive 

review of recent literature. Most recently, BVAR models have been used by institutions as an 

alternative model to predict short-term inflation with strong accuracy.  

Carriero et al. (2011) studies the forecasting performance of Bayesian VARs, and they 

assess how various specifications affect the results. They focus on a mid-size model consisting 

of 18 variables from the U.S. economy. Later, they determine the robustness of the outcomes 

by analyzing the data from Canada, France, and the U.K. To summarize the large set of results, 

authors found that BVAR models caused small losses on average across variables. They 

suggest that findings with simple methods work well and can be applied as an econometric tool 

for most fields of research. 

Huang (2012) explored the good-fit BVAR model for inflation output growth forecasting 

in the Chinese economy. Quarterly data is used for estimation in the model, capturing the date 

range between 1998Q1 and 2005Q4. The author employed an expanding method by iterating 

the forecast several times to measure projection reliability for four quarters ahead. As a result 

of model estimation with Minnesota prior for the period between 2006 and 2012, the BVAR 

model reduced forecast error of inflation and output growth. 

Dahem (2015) studied the forecasting performance of the standard VAR and Bayesian 

VAR for the Tunisian economy. A data range has been used in the models covering the 

1991Q1- 2013Q4 period. The author realized that the Bayesian VECM for the mark-up model 

was more appropriate with lower RMSFE in comparison with the monetary model and Phillips 

curve for predicting cost-push inflation in Tunisia. These findings also show that forecasting 

using the markup model leads to a reduction of forecast errors relative to other models. 

In another study, the accuracy of inflation forecast with BVAR for the Russian economy 

is estimated by Demeshev and Malakhovskaya (2015). The data used in the model ranges from 

January 1996 to April 2015, with 23 variables. They have used different sizes of models to 

measure whether high-dimensional model variables outperform low-dimensional models. They 

concluded that the model with 23 variables forecast better than a standard dimensional model 

with 6 or 7 variables. Also, they found that the BVAR estimation method outperforms VAR in 

terms of forecast reliability.  

Brazdik and Franta (2017) scrutinized the forecasting performance of a small-scale 

mean-adjusted BVAR for the Czech economy. Quarterly data used in the model covers the 

1998Q1-2016Q4 period. They compared conditional forecasts with the model and estimation 

method that the Czech National Bank utilizes. In conclusion, BVAR is estimated to be useful 

for 3-7 quarters ahead.  
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Vika (2018) discussed VAR and Bayesian VAR forecast ability by analyzing Albania's 

economy. The estimation period covers the data from 2001Q1 to 20212Q4 in an out-of-sample 

forecasting analysis. The scholar conducted estimation variables in log-difference in the level 

and percentage change for quarterly and yearly models. The results indicate that the VAR 

model with annual percentage changes is most preferred among others. Although Bayesian 

VAR lacks behind VAR model with small forecast error, the author emphasized the importance 

of BVAR for usage.   

Öğünç (2019) studied short-term inflation forecasting models by employing quarterly 

data and the BVAR estimation method. The authors have utilized variables in levels or 

differences and estimated the accuracy of conditional and unconditional forecasts with seven 

BVAR models. The number of variables increases from Model 1 to Model 7. Results indicate 

that variables in log-difference show better results than log-levels. Among the models, they 

found a slight difference in forecasting accuracy up to two quarters, and conditioning helped to 

reduce the forecast error. The paper concluded that small and medium size BVAR models with 

log-differenced variables and with a normal inverted Wishart prior are favorable for short-term 

inflation. 

Papavangjeli (2019) conducted an analysis to assess the inflation forecast reliability of 

the BVAR model for the Albanian economy. The data covers 16 years from 2002Q2 to 2018Q4 

with nine variables from real private, financial, and external sectors. Variables in the models 

have been transformed into annual growth rates, except domestic and foreign interest rates. 

Lag selection is based on the optimal forecasting error since the information criteria function is 

absent. As a result, the author remarked on the success of the BVAR model among benchmark 

estimation methods. 

Shapovalenko (2021) carried out the study related to the comparison of the BVAR and 

VAR QPM models that the National Bank of Ukraine utilizes for inflation forecasting in Ukraine. 

The data used in the research covers the date range from 2004Q1 to 2020Q1. After executing 

a grid search to find the optimal shrinkage value, the 0.2 value is imputed as a hyperparameter. 

The comparison of inflation and GDP forecasts shows that BVAR forecasts are better than 

QPM. 

Considering the validated effectiveness and competency of BVAR estimation 

techniques, we utilize the BVAR estimation method, incorporating Minnesota and Sims-Zha 

Normal Wishart priors to develop a new model for forecasting Azerbaijani inflation. Based on 

the literature review, we are confident that the findings of this study will make a distinctive 

contribution to elevating forecast precision. 

3. Data, Methods, and Methodology
3.1 Data 

The monthly data used in this paper covers the period between 2003M1 and 2023M6. 

Data have been retrieved from the CBAR, the State Statistical Committee of the Republic of 

Azerbaijan (SSCRA), the Ministry of Finance of the Republic of Azerbaijan, the Energy 



7 
 

Information Agency (EIA), and International Monetary Fund (IMF). We have employed 17 

variables, including one exogenous variable. 

All variables enumerated in this study are subject to seasonal adjustment with X11 

seasonally-adjustment methodology, considering monthly changes in the prices of products 

and services during the year. Since all variables except average loan interest for between 1 

and 3 years are non-stationary in level, we transform the remaining variables into stationary by 

a differencing log of variables. Augmented-Dickey-Fuller tests were applied to test stationarity 

features of the variables before and after I (1) transformation. The log-difference transformation 

of needed variables rendered all variables stationary, meaning that the mean and variance of 

variables became constant over time. We have inserted models for both structures in Tables 1 

and 2. Additional information related to the variables can be found in the table in Appendix A. 

Inverse roots of AR characteristic polynomial results confirm model stability, which we included 

in Appendix D. 

3.2 Methods 

We organized the models in a stepwise augmentation and incremental manner that have 

different objectives. The main goal of a stepwise augmentation or category-based model 

structure is to examine the predictive performance of different categories of economy involved 

in an economy. We aim to determine which of these economic category-based considerations 

in the Azerbaijan economy that influences the forecasting ability of the model. We intend to 

achieve this goal through sequential addition of variables that is taken from the varied 

categories of the economy, such as price indices, labor market, monetary factors, and demand 

in the retail sector into Model 1. Usage of this method enables us to delve into an in-depth study 

of the effect of specific categories and highlights critical predictors for forecasting. On the other 

hand, incremental models target to find out whether variable expansions affecting the 

predictability strength of the model in alignment with the model of Öğünç (2019). In other words, 

we aim to determine whether the increase in the variable set or accumulation of categories-

specific factors leads to better forecasting capabilities through the gradual inclusion of new 

variables. The model definitions are listed below:  

Model 1 – Model 1 variable set is based on Rahimov (2020) study that consists of CPI 

in Azerbaijan, world food price index (WFPI) calculated by IMF, weighted CPI in trade partners 

(TCPI), non-oil weighted nominal effective exchange rate (NEER), agricultural price index (API). 

In addition to Rahimov (2020), we have added M3 money aggregate and budget expenditure 

into Model 1. Although Rahimov (2020) utilized M2 in his working paper, we found a low RMSFE 

value when the M3 variable is used in comparison with other money aggregates. In addition to 

the previous study mentioned above, we added government budget expenditure to our base 

model since we identified its effectiveness in lessening forecast error. The variable set is the 

same for both category-based and incrementally structured models. 

Model 2 – Model 2 includes variables of Model 1 plus additional variables such as the 

industrial price index (Bańbura et al., 2010; Huang, 2012; Doan et al., 1984; Koop, 2011; and 

others), transport price index (Bańbura et al., 2010; Koop, 2011 and others) and manufacturing 

price index (Bańbura et al., 2010; Koop, 2011; and others). We assume that price change 
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producer prices also have a contribution to inflation forecasting. As in Model 1, the variable set 

is the same for category-specific and incremental model structures.  

Model 3 – Nominal consumer credit volume (Bańbura et al., 2010; Koop, 2011; and 

others) and interest rate of credits between 1 and 3 years (Huseynov et al., 2014) have been 

included in Model 1 as financial variables in the category-based model. Although monetary 

transmission is weak in Azerbaijan (Mammadov & Adigozalov, 2014), we examine the forecast 

performance of the variables mentioned above. For incrementally structured Model 3, we 

incorporated monetary variables into Model 2 to analyze the impact of the expanded number 

of factors from producer price indices and monetary factors on forecasting performance.  

Model 4 – In Model 4, we have included into Model 1 labor market factors such as 

employment in non-oil sector (Öğünç, 2019; Bańbura et al., 2010; Koop, 2011; Papavangjeli 

(2019); and others) and nominal average wage (Bańbura et al., 2010; Papavangjeli (2019); and 

others) variable set for the economic category-based structured model. The purpose of this 

model is to find the effect of labor market activity on inflation. For the incrementally designed 

model group, Model 4 is developed by adding the above-mentioned labor market variables into 

Model 3 to examine the aggregate effect of factors from different categories of economy we 

discussed till this model.  

Model 5 – In Model 5, demand factors have been added to Model 1. Although, as 

demand factors, real GDP growth and output could be used, since we structured monthly 

models, we employed the sum of catering and paid services, and trade turnover as a 

representative of demand in the economy to study the significance of demand determinants on 

inflation. For incrementally organized Model 5, demand factors have been integrated into 

aggregate Model 4 of the incremental model group. This grants a comprehensive study of the 

factors from all categories of economy we assumed have the contribution to determining the 

future of inflation dynamics. 

Optimal Model – Additionally, this study suggested the optimal model with the minimum 

RMSFE value by examining Model 5 within an incrementally organized group of models. In this 

process, we eliminated the variables that diminish forecast performance from Model 5 

containing all study variables. As a result, we are left with all Model 1 variables, industrial and 

manufacturing producer price indices from Model 2, average loan interest of banks for 1 and 3 

years from Model 3, and the number of hired workers from Model 4. None of the variables from 

Model 5 is selected due to their diminishing effect on the forecast performance of the inflation 

rate.  

To all models in both structured models set, we have included the log-difference of Brent 

oil price in its 3rd lag as an exogenous variable since it has a significant minimizing effect on 

forecast errors of the whole models in the 3rd lag. We have described models for both structures 

in Tables 1 and 2 in briefly. 
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Source: Author’s construction 

Table 1 represents the category-based model sets. Model 1 contains core variables that previous studies and our initial analysis have found 

significant explanatory models with different estimation methods. Other models add up variables to Model 1 set-by-classifications of the 

economy.  

Source: Author’s construction 

Table 2 represents the structure of incremental model sets. Model 1 contains core variables that previous studies and our initial analysis have 

found significant explanatory models with different estimation methods. Other models add category-specific variables incrementally into the 

previous model. 

Table 1:  Economic category-based structured models 
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World food prices * * * * * * 

CPI in trading partners * * * * * * 

Non-oil import weighted NEER * * * * * * 

Agricultural PPI * * * * * * 

Budget expenditure * * * * * * 

M3 * * * * * * 

Industrial PPI * * 

Transport PPI * 

Manufacturing PPI * * 

Consumer credit volume * 

1–3-year average loan interest * * 

Employment * * 

Nominal Wage * 

Catering and paid services * 

Trade turnover * 

Oil price - Exogenous variable * * * * * * 

Table 2: Incrementally structured models 
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World food prices * * * * * * 

CPI in trading partners * * * * * * 

Non-oil import weighted NEER * * * * * * 

Agricultural PPI * * * * * * 

Budget expenditure * * * * * * 

M3 * * * * * * 

Industrial PPI * * * * * 

Transport PPI * * * * 

Manufacturing PPI * * * * * 

Consumer credit volume * * * 

1–3-year average loan interest * * * * 

Employment * * * 

Nominal Wage * * 

Catering and paid services * 

Trade turnover * 

Oil price - Exogenous variable * * * * * * 
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3.3 Methodology 

Standard Vector Autoregressive (VAR) estimation methods allow us to capture dynamic 

interrelationships among a set of endogenous variables.  

𝒚𝒕 = 𝜷𝟏𝒚𝒕−𝟏 + 𝜷𝟐𝒚𝒕−𝟐+ . . . 𝜷𝒑𝒚𝒕−𝒑  + 𝑬𝒙𝒕 + 𝜺𝒕, (1)

𝜺𝒕~𝑵(𝟎, 𝚺) (2) 

where 𝒚
𝒕
 denotes the matrix encompassing n endogenous variables, presenting a

comprehensive view of the interrelated stationary variables; 𝒙𝒕 represents a vector of 

exogenous variables, incorporating both the constant term and additional exogenous 

regressors to enrich the model's explanatory power. To define coefficients 𝜷 stands as a 

coefficient of endogenous variables and E as a coefficient of exogenous variables. Subscript p 

and t denote lag length and indicate the specific period at which the model is being applied or 

estimated, respectively. 

To generalize the above equation: 

𝒀𝒕 = 𝑿𝒕𝑨 + 𝜺𝒕 (3) 

Shortly, we define all coefficients collectively by A, endogenous and exogenous variables as X 

at time 𝒕. 

To write the above equation in a vectorized form: 

𝒚 = (𝒍𝒏 ⊗ 𝑿)𝑩 + 𝜺  (4)

where y is vec(Y), B is vec (𝐴), and 𝜺 is vec(∈). 

VARs have been widely used for forecasting over the past three decades. The existing 

literature on this subject stresses the point that unrestricted VARs encounter over-

parametrization problems as the number of explanatory variables increases (see Ciccarelli and 

Rebucci, 2003; De Mol et al., 2008) which may cause poor estimation and forecasting 

performance. This problem is rooted in the fact that several parameters grow non-linearly as 

the variable size increases (Demeshev and Malakhovskaya, 2015; Papavangjeli, 2019). In 

other words, available data may not always involve all information to analyze, meaning that 

there can be trivial parameters that may harm forecasting performance. The prior distribution 

acts as a shield, restricting parameters from becoming zero by inputting information we 

determine (Sevinç & Ergün, 2009). To transform the complex VAR model into parsimony, either 

we can apply restrictions on some parameters where we assume the relationship is weak, or 

we can use other estimation methods to replace standard VAR. Bayesian VAR is one 

alternative for restricting over-parametrization by imposing restrictions via prior beliefs, for 

which we have employed two of them: Litterman/Minnesota and Sims-Zha Normal Wishart 

priors. The fundamental concept of the BVAR estimation technique is to restrict over-

parametrization by imposing prior beliefs. Hence, it reduces parameter uncertainty and rises 

the forecast performance of the models. 

In alignment with Litterman (1986), the standard deviation of the prior distribution for lag 𝒍 of 

the variable 𝒋 in equation ⅈ is given by: 

𝒚𝒕 = 𝑨𝟎 + 𝒚𝒕−𝟏 + 𝜺𝒕 (5)
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𝑺(ⅈ, 𝒋, 𝒍) =
[𝜸𝒈(𝒍)𝒇(ⅈ,𝒋)]𝒔ⅈ

𝒔𝒋
 (6) 

𝒔ⅈ signifies the standard error of univariate regression on the equation ⅈ. The ration 
𝒔ⅈ

𝒔𝒋
 stands for 

correction of the standard deviation of the variables. 𝜸 denotes the overall tightness and is also 

the standard deviation on the first own lag. 𝒈(𝒍) determines the tightness of the lag 𝒍 relative to 

lag one and can be type of harmonic or geometric with a decay factor d of one or two. It tightens 

the prior on increasing lags. 𝒈(𝒍) decays harmonically with 𝒈(𝒍) = 𝒍−𝒅. Geometric type of 𝒈(𝒍) 

tends to get tight very fast. The parameter 𝒇(ⅈ, 𝒋) represents tightness of variable 𝒋 in equation 

ⅈ relative to variable ⅈ with the relative tightness coefficient w. For deterministic variables the 

priors are uninformative. In the literature, overall tightness 𝜸, lag decay factor d and weight 

parameter 𝒇(ⅈ, 𝒋) are called as hyperparameters.  

Following Blake & Mumtaz (2012) we can write Normal Wishart prior probability distribution as 

below: 

𝒑(𝑩|𝜮𝜺)~𝑵(�̂�𝟎, 𝜮𝜺 ⊗ 𝑯) (7)

𝑷(𝜮𝜺)~𝑰𝒘(�̅�, 𝜹) (8)

�̂�𝟎 is defined as prior probability distribution, the matrix 𝑯 is a diagonal matrix that are for 

coefficients on lags can be defined as  (
𝝀𝟎𝝀𝟏

𝒍𝝀𝟑𝝈ⅈ
)

𝟐

and for constant can be defined as (𝜆0𝜆4)2, �̅� is

defined as 𝑁 x 𝑁 diagonal matrix with diagonal elemement with is as below: 

�̅� = (
𝝈ⅈ

𝝀𝟎
)

𝟐

(9) 

�̅� can be re-written in a matrix form: 

�̅� = (
(

𝝈𝟏

𝝀𝟎
)

𝟐

𝟎

𝟎 (
𝝈𝟐

𝝀𝟎
)

𝟐
) (10) 

Hyperparameters that make up the diagonal elements can be defined as following: 𝝀𝟎 

which is overall tightness of the covariance matrix, 𝝀𝟏 is the overall tightness of the priors on 

the first lag, 𝝀𝟑 a is lag decay that controls the degree to which coefficients on lags higher than 

1 are likely to be zero, 𝝀𝟒 is the control variable on constant. Further procedure of the equation 

can be found in Blake & Mumtaz (2012) research paper. 

Some studies have employed standard values accepted by Minnesota hyperparameter 

values. On the contrary, to find a proper hyperparameter that strengthens forecasting accuracy, 

we conduct a grid search in line with Giannone et al. (2012), Dieppe et al. (2016), Papavangjeli 

(2019), Shapovalenko (2021) to find the appropriate hyperparameter values which 

simultaneously it rises marginal likelihood for the models (Dieppe et al., 2016). We check the 

overall tightness parameter from 0 to 1, incrementing step-by-step with an increase of 0.05 and 

lag decay from 1 to 4. The range of lag decay implemented in this study captures the short-

term dynamics of the variables that typically occur within the first few periods while maintaining 

parsimonious framework of the analysis. Residual covariance tightness is treated as constant 
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in Litterman’s prior (Carriero et al., 2011), while for Sims-Zha (NW), we input values from 0 to 

1. Inversely, cross-variable weight is fixed in Sim-Zha (NW), while Litterman’s prior accepts 

value ranges between 0 and 1. Consequently, with the increase in the number of variables, 

especially in the incrementally designed model set, we observed that hyperparameter values 

needed to be increased close to 1 for the absence of autocorrelation and improved forecast 

performance, which is in line with the results of Bańbura et al. (2010).  

Lag selection is the fundamental issue for VAR models that higher lags reduce the 

degrees of freedom, while lower lags may not capture the inter-temporal relationship. Also, a 

lower count of lags may raise concerns over the serial correlation problem (Lack, 2006). This 

underscores the necessity of selecting a proper lag length that ensures effective forecasting 

performance. In line with Giannone et al. (2015), Papavangjeli (2019), and Vika (2021), 

employing RMSFE for lag selection assists us in the identification of optimal lag length with 

minimized reduced forecast error. Our findings suggest that, regardless of the estimation 

method, all models consistently manifest low prediction errors within three lags. The importance 

of the lag length is also emphasized by Carriero et al. (2011) that adoption of shorter lags 

usually results in improved forecast accuracy. The choice of 3-lag selection leads to the removal 

of serial correlation across the complete set of models for all estimation techniques in this study. 

Thus, more than three lags autocorrelation issue becomes troublesome, while less than three 

lag order selection deliver high forecast error. All hyperparameter values and lag lengths of 

models estimated in this study, shaped by the forecast performance of models and estimation 

methods through thousands of repeated iterations, are summarized in Table 3. 

Table 3: Hyperparameter and lag specification  

  VAR Sims-Zha (NW) Litterman/Minnesota  

AR coefficient - 0 0 

Residual covariance tightness - 1 - 

Overall tightness - 0.9 0.9 

Relative cross-variable weight  - - 1 

Lag decay - 1 1 

Lag length 3 3 3 

Source: Author’s calculation. 

Notes: The table contains the significant information we used during estimation of 3 estimation techniques and 

models, with all inputs satisfying the requirements of ordinary least squares. 
 

Following the determination of appropriate inputs above, we have conducted several 

diagnostics tests. After successive test results, we step into forecasting the performance of the 

models and estimation techniques to reach our objective. Using the expanding strategy method, 

we conducted model estimations between January 2003 and June 2020 by utilizing the out-of-

sample technique, expanding the model 24 iterations with a forecast of 24 months ahead, 

covering realized historical data until May 2023. Expanding strategy can be a useful approach 

through a periodic increase in the number of observations by one month in each iteration, 

leading to accumulating data which may yield a better-fit model and improved forecasting 

accuracy. In contrast, the rolling window strategy has a fixed range of observations, and in each 

iteration, the range shifts one period forward from both sides, and the number of observations 

remains the same. Hence, the expanding strategy is deemed efficient due to the preceding 

statement. In alignment with the equation suggested by Papavangjeli (2019), we conduct root 

mean square forecast error (RMSFE) analysis with an expanding strategy represented below: 
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RMSFEh = √
1

𝑇−ℎ+1
∑ (𝑦 − �̂�)𝑡+ℎ

2𝑇−ℎ

𝑖=R
   (11) 

where 𝒚 − �̂� is the difference of actual values and predicted values for the relative period; T 

represents the total span of the entire dataset, separated into in-sample R and out-of-sample 

period P; h denotes the forecast horizon; t is the timepoint forecast. We conduct out-of-sample 

forecast from R+h to T.  We have portrayed RMSFE assessment with expanding window 

strategy in Figure 2. 

To examine the effectiveness of our models, we compare them with an autoregressive 

(AR) model. The corresponding AR model, simple and parsimonious, is the baseline forecast 

for evaluation as to how much information can be predicted by the developed model(s). We 

employed conventional VAR with the same variables we used in Model 1 for additional 

evaluation of the models with the Bayesian estimation method. This strengthens the 

interpretation ability of the inferences and establishes a pathway of comprehensive assessment 

between our proposed model and existing benchmarks within modern econometric literature. 

 

 

 

 

 
 

Source: Author’s construction 

Notes: The figure illustrates the assessment procedure of forecast error of the models. 

The training time interval is identified with blue boxes, and the out-of-sample period is 

identified with red boxes, lasting for 24 months. Subscript i represents iterations from 1 

to 24 utilized for expanding strategy. 

In our study, we applied a 4-fold approach to improve the precision and reliability of 

inflation forecasting with different approaches. In the first approach, we assessed individual 

models’ accuracy for 24 months ahead using RMSFEs; those with lower values in specific 

periods were considered as potential candidates to use as forecast. To optimize the accuracy 

of models in the prediction of inflation dynamics, all models can be estimated and forecasted, 

and later predicted results can be selected according to lower RMSFE values in the relative 

periods. 

Second, we built an average RMSFE value table for 12 and 24 months of all models. 

Based on the results derived from the first approach, we depict and compare the inferences of 

the models. Pursuing this approach, based on the lower average RMSFE values for 12 or 24 

months, depending on the horizon forecast purpose, the concrete model can be selected for 

forecasting. 

As a third strategy to get optimal forecast outcomes, we introduced a weighted average 

approach to take advantage of the characteristics of various models and produce more 

accurate inflation projections. Acknowledging that models may perform well in varying 

Figure 2: Illustration of expanding window 
strategy 

 

𝑖1 

𝑖2 

𝑖3 

𝑖4 
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economic environments, the weighted combination approach allows us to blend information 

from various models. Aiolfi et al. (2010) found that combination forecasts outperform model 

forecasts from different models. The combination approach made it easier to generate inflation 

forecasts by assigning weights to each model in proportion to their historical RMSFE 

performance in the same time point for 24 months. Mathematically, the weighted combination 

method is expressed as follows: 

Let’s denote the RMSFE for models in this study: 

𝑹𝑴𝑺𝑭𝑬𝑖 where i = 1, 2, 3, 4 …. 19 models 

The weight assigned to each model is inversely proportional to its RMFSE: 

𝓌i = 
𝟏

𝑹𝑴𝑺𝑭𝑬ⅈ
  (12) 

𝓌*
i = 

𝔀ⅈ

𝜮𝒕=𝟏
𝟐𝟒 (𝔀𝒕)

  (13) 

                CFt = 𝜮𝒕=𝟏
𝟏𝟗  𝓌*

i, t  x Fi,t  (14)                 

where 𝓌 represents weights of models derived based on RMSFE values; 𝓌* is the normalized 

weight introduced in equation 3 that contains the sum of the inverse RMSFE values to equalize 

to 1; F or denotes forecast outcomes of models; CF represents combined forecast outcomes 

by sum of multiplying normalized weights of models to model outcomes in the timepoint. The 

subscripts i and t symbolize the model and forecast timepoint, respectively. 

This method provides a strategy in which the effect of each model is determined by its 

historical predictive accuracy. Models with lower RMSFEs have higher weights, which means 

that they have a more substantial effect on the composite forecast.  

 

4. Results and discussion 

Before forecasting, the stability test and impulse response were assessed. From the 

results we included in the Appendix, all models of the three estimation techniques communicate 

that all models are stable. Impulse responses also show that responses of variables to shocks 

are in line with the theory. 

Our empirical analysis included a wide range of forecasting models, starting from 

classical auto-regressive (AR) and vector auto-regressive (VAR), going through to Bayesian 

VARs with Minnesota and Sims-Zha normal Wishart priors to maximize inflation forecast 

precision. All models have been estimated from 2003M1 to 2019M6, then forecasted for 24 

periods ahead by iterating 24 times using an expanding strategy. For the sake of saving space, 

we compiled the detailed RMSFE value in Appendix B1 and B2 parts of the paper. Regarding 

the discussion in the methodology part about four strategies to achieve more accurate forecast 

outcomes, we are going to present analysis results and interpretation in sequence. To start with 

the first approach, inferences suggest that all models, including AR and VAR, which we deemed 

as benchmark models, play a significant role in forming forecasting dynamics. To interpret the 

findings presented in Table 4, both incremental and categorical models have the same set of 

models that exhibit superior performance in the first 12 months. It is also worth mentioning that 
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forecast performance difference is negligible in the same forecast horizon of incremental and 

categorical models between 12 and 24 forecast spans. Elaborating on the forecast performance 

of the first 12 months further, the naïve model outperforms multivariate models consecutively 

for the first three months. In later periods till the end of the forecast horizon, AR model accuracy 

faded among other models. Thus, Model 2 of Minnesota prior takes the 4th and 5th months. 

Sims-Zha's (NW) optimal model captures the 6th, 7th and 8th months of forecast interval with the 

values approaching the lower bound of RMSFEs among the whole projected time horizon. VAR 

optimal model captures the further periods to complete one year ahead forecast. Since short-

term forecast outcome is used for medium and long-term forecast models, it is needed to report 

in a quarterly basis, too. Thus, the AR and Sims-Zha NW Optimal Models perform well for the 

1st and 2nd quarters, respectively, while for the 3rd and 4th quarters, the VAR Optimal Model 

gains significance as a contributor. Later periods change depending on the model structure's 

characteristics, which can be seen in Table 4. Overall, there is no significant forecast error 

difference between the 12 and 24-month forecast intervals. However, incrementally structured 

models seem slightly better-performing models. 

Source: Author’s calculations.  
Note: The table provides information on the RMSFE of the models utilizing various estimation methods, spanning 12- and 24-
month averages. Models with lower RMSFE have been listed in the table. Cells shaded with deep green color highlight lower 
forecast error, while those in a lighter tone indicate higher forecast error. 

Table 4: Models with minimum RMSFE values of incremental and category-based models 

Forecast 
horizon 

Incremental models with min 
RMSFEs 

Min 
RMSFE 

Category-based models with 
min RMSFEs 

Min 
RMSFE 

1M AR Model 0.35 AR Model 0.35 

2M AR Model 0.43 AR Model 0.43 

3M AR Model 0.41 AR Model 0.41 

4M Litterman Model 2 0.40 Litterman Model 2 0.40 

5M Litterman Model 2 0.39 Litterman Model 2 0.39 

6M Sims-Zha (NW) Optimal Model 0.37 Sims-Zha (NW) Optimal Model 0.37 

7M Sims-Zha (NW) Optimal Model 0.35 Sims-Zha (NW) Optimal Model 0.35 

8M Sims-Zha (NW) Optimal Model 0.36 Sims-Zha (NW) Optimal Model 0.36 

9M VAR Model Optimal 0.37 VAR Model Optimal 0.37 

10M VAR Model Optimal 0.38 VAR Model Optimal 0.38 

11M VAR Model Optimal 0.40 VAR Model Optimal 0.40 

12M VAR Model Optimal 0.43 VAR Model Optimal 0.43 

13M Litterman Model 4 0.42 VAR Model Optimal 0.44 

14M Litterman Model 4 0.41 VAR Model Optimal 0.43 

15M VAR Model 3 0.44 VAR Model 2 0.44 

16M Litterman Model 4 0.56 Sims-Zha Model 2 0.58 

17M Litterman Model 4 0.60 VAR Model Optimal 0.62 

18M Litterman Model 4 0.60 Sims-Zha Model 2 0.61 

19M VAR Model 4 0.58 Sims-Zha Model 2 0.60 

20M VAR Model 4 0.58 VAR Model Optimal 0.61 

21M VAR Model 4 0.58 Sims-Zha Model 2 0.60 

22M VAR Model 4 0.57 Sims-Zha Model 2 0.60 

23M VAR Model 4 0.57 Sims-Zha Model 2 0.60 

24M VAR Model 4 0.57 Litterman Model 2 0.60 

12 months 
average 

- 0.39 - 0.39 

24 months 
average 

- 0.46 - 0.47 
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Employing a secondary approach for model choice to seek more accurate prediction, we 

have combined average forecast errors in Table 5 for 12 and 24 months long to be used 

depending on forecast horizon purpose. On average, optimal models yield better outcomes 

relative to other models, including both incremental and category-based models, and Bayesian 

VAR with Sims-Zha Normal Wishart marginally demonstrates superiority out of 3 optimal 

models. Model 3, Model 4 and Model 5, distinguished by starred annotations, highlight the 

outcomes of models from structural models’ basket. The difference becomes noticeable upon 

scrutinizing the model sets in Tables 1 and 2, which show that variable sets are different in 

incremental and category-specific structured groups due to purpose. Notably, while Model 1 

and Model 2 exhibit uniformity, the variable sets vary from Model 3 to Model 5. Therefore, 

forecast outcomes for Model 1, Model 2 and optimal models of the three estimations methods 

are the same for two different structured model sets. 

Table 5: Average forecast performance of the models 

Models 

Incremental models Category-based models 

12 months 
average 

24 months 
average 

12 months 
average 

24 months 
average 

AR Model 0.46 0.54 0.46 0.54 

VAR Model 1 0.51 0.57 0.51 0.57 

VAR Model 2 0.49 0.53 0.49 0.53 

VAR Model 3* 0.50 0.53 0.54 0.59 

VAR Model 4* 0.56 0.55 0.50 0.57 

VAR Model 5* 0.58 0.61 0.53 0.59 

VAR Model Optimal 0.44 0.50 0.44 0.50 

Litterman Model 1 0.50 0.57 0.50 0.57 

Litterman Model 2 0.46 0.52 0.46 0.52 

Litterman Model 3* 0.48 0.52 0.51 0.57 

Litterman Model 4* 0.52 0.53 0.48 0.55 

Litterman Model 5* 0.54 0.56 0.50 0.58 

Litterman Optimal Model 0.44 0.51 0.44 0.51 

Sims-Zha Model 1 0.50 0.57 0.50 0.57 

Sims-Zha Model 2 0.47 0.52 0.47 0.52 

Sims-Zha Model 3* 0.48 0.53 0.52 0.57 

Sims-Zha Model 4* 0.53 0.54 0.53 0.58 

Sims-Zha Model 5* 0.54 0.57 0.51 0.57 

Sims-Zha Optimal Model 0.43 0.51 0.43 0.51 

Source: Author’s calculations.  
Note: The table provides information on the RMSFE of the models utilizing various estimation methods, spanning 12- and 24-month averages. 
The asterisk (*) denotes that model forecast errors are different depending on the model’s structure. Models shaded with deep green color 
highlight lower forecast error, while those in a lighter tone indicate higher forecast error. 

 

We can observe that from Model 1 to Model 5 of the three estimation techniques, the 

trend of average prediction error is rising, except for Model 2, which gains supremacy in 

accuracy. While mean forecast errors slightly surge from Model 3 to Model 5 of BVAR priors in 

incremental models set, the rate of ascent of those in VAR models barely outperforms BVAR 

models. This phenomenon can arise as a cause of overparameterization issues in VAR. The 

difference between BVAR and VAR techniques is more visible if the comparison is conducted 

through 24-month average RMSFE values. In the category-based models’ group, the trend of 

RMSFE values almost remains flat due to the modest change in the variable count of models 



17 
 

from Model 1 to Model 5. To compare forecast errors with Table 4 and Table 5, models with 

minimum RMSFE values, of which the average is 0.39, have better performance in comparison 

with average forecast performance models, which the model with minimum RMSFE is 0.43. 

More detailed figures about out-of-sample forecast errors can be found in Appendix B1 and B2. 

As a third approach for forecasting 1 or 2 years ahead, depending on the purpose, we 

suggest a combination weighted method. We calculated combination forecasts based on out-

of-sample forecast errors of all models. Weights of relevant models for both structures have 

been inserted in the appendix part. 

As mentioned in the methodology part, all models have different characteristics, from 

the estimation method to the number of factors employed in the models. Therefore, acquiring 

all information from all models based on their performance weight can also offer composite 

forecast results. Appendix C1 and C2 tables are designed to use a weighted combination 

forecast of all models. Applying the equations we presented in the methodology part, those 

weights can be utilized to find timepoint forecasts by aggregating products obtained by 

multiplying the timepoint forecasts of all models with their relevant weights. By repeating this 

formula, multistep forecasts can be achieved. Approach 3 allows us to involve the contribution 

of all models and estimation techniques. 

Appendix C1 here 

Appendix C2 here 

In a final approach, we suggested taking a simple mean average of outcomes from all 

models we analyzed in this study. However, a simple average approach may cause a diverge 

in the ultimate outcome from the effective forecast result. As confirmed by Aiolfi et al. (2010), it 

would be better to utilize the combination method, which blends all prediction outcomes of the 

models with different characteristics. 

 

5. Conclusion 

Our goal is twofold in this paper. We present short-term inflation forecasting models with 

the BVAR estimation method that most recently gained popularity for its strengths in alleviating 

the overparameterization problem inherent to standard VAR and suggest forecasting strategies 

to utilize the models. This implies that the inclusion of more variables that explain the focus 

variable does not pose an issue, unlike the VAR estimation technique. Therefore, we have built 

a base model with seven endogenous variables and one exogenous variable that are the main 

explanatory variables of inflation in Azerbaijan and supplementary models that capture factors 

from different parts of the economy. We designed this set of models in an economic category-

focused manner. The second type of model set consists of incrementally organized models. 

The variables of category-specific models, starting from Model 2 to Model 5, accumulated their 

variables to their preceding models. Model 5 of the incrementally structured model consists of 

16 endogenous variables and one exogenous variable. These two ways of model structuring 

allow us to assess, respectively, how the factors associated with various categories of economy 

and the accumulation of these factors contribute to diminishing forecast error. We have 

estimated these two groups of models with AR, VAR, Minnesota, and Sims-Zha Normal Wishart 
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priors of BVAR. AR and VAR estimation techniques are employed to compare the forecast 

performance of the priors of the BVAR estimation method. Afterwards, we built an alternative 

model, labelled as the Optimal model, by preserving only significant variables that lessen 

forecast error out of the whole variable set.  

Quality comparison of structure, model and estimation methods are assessed through 

forecast accuracy gauge – RMSFE. Utilizing the expanding window strategy, we have 

forecasted 24 months ahead, expanding step-by-step by 24 times to measure the average 

forecast error of each month. After conducting the analysis, we derived numerous 

interpretations with respect to structure, model, and estimation methods. Later, we yielded four 

strategies for obtaining the ultimate forecast figure. The estimated results indicate that all 

models involving the benchmark AR model can have a contribution to the models. Accordingly, 

if approach one is accepted for forecasting strategy, the AR model significantly outperforms the 

VAR and BVAR models for the first three months. The following two months are marked by 

Litterman Model 2 forecasting performance, which slightly differs among the three multivariate 

estimation methods. The remaining seven months are dominated by the optimal model we 

developed with Sims-Zha prior of BVAR and standard VAR to complete the 12-month horizon. 

For the 1st and 2nd quarters of the forecast horizon, the AR and Sims-Zha NW Optimal models 

show better performance, while the 3rd and 4th quarters are secured by the VAR Optimal model. 

In the context of average forecast error, which we highlighted as 2nd approach for forecasting 

strategy among both economic category-based and incrementally structured model sets for 12 

months forecast horizon BVAR Sims-Zha (NW) Optimal model and for 24 months forecast 

horizon standard VAR Optimal model outpaces the competitive models. Meanwhile, 

incrementally structured models are built in alignment with Öğünç (2019) to compare the 

performance of the complex model with the simple one and the models with a small number of 

variables perform better than those of many, which is consistent with the same study. The initial 

two approaches focus on evaluating the performance of individual models independently; the 

third and fourth approaches encompass all the forecast contributions of all models together with 

the estimation methods we utilized in this study. Thus, the third approach blends outcomes 

regarding the weighted average of forecast accuracy of the models and estimation techniques; 

4th approach encompasses only the simple average of the outcome of those. By referring to the 

prior literature, we suggested employing a weighted combination forecast technique to get a 

reliable ultimate forecast outcome. 

The main limitation we have encountered is the need for more data available for some 

variables. The date range for some variables is lower than the maximum range, which could be 

the main reason for the poor model performance of some models. Based on the forecast error 

outcomes, we can conclude that Bayesian VARs can be a valuable tool for forecasting when 

following the weighted combination method approach, we discussed above. Further studies 

may focus on modelling inflation via time-varying parameter Bayesian VAR techniques.  
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Source: Constructed by author 

 Appendix A: Description of data set 
 

Variables - in 
levels 

Source Status in 
level 

Data range Data description 

CPI CBAR 
Non-

stationary 
2003M1-
Present 

Consumer price index 

World food prices IMF 
Non-

stationary 
2003M1-
Present 

World food and beverages index of 
IMF 

CPI in trading 
partners 

CBAR 
Non-

stationary 
2003M1-
Present 

CPI in trading partners of Azerbaijan 
based on non-oil import weight 

N.o.i.w NEER CBAR 
Non-

stationary 
2003M1-
Present 

Nominal effective exchange with 
trading partners of Azerbaijan based 
on non-oil import weight 

Agricultural PPI CBAR 
Non-

stationary 
2003M1-
Present 

Price index of agricultural products 

Budget expenditure MFRA 
Non-

stationary 
2003M1-
Present 

Monthly nominal budget expenditure 
of Azerbaijan 

M3 CBAR 
Non-

stationary 
2003M1-
Present 

M3 nominal money aggregate 

Industrial PPI SSCRA 
Non-

stationary 
2003M1-
Present 

Industrial producer price index 

Transport PPI SSCRA 
Non-

stationary 
2005M1-
Present 

Transport producer price index 

Manufacturing PPI SSCRA 
Non-

stationary 
2003M1-
Present 

Manufacturing producer price index 

Consumer credit CBAR 
Non-

stationary 
2006M1-
Present 

Consumer credits in nominal volume 

1-3 year interest rate CBAR Stationary 
2005M1-
Present 

1-3 year weighted average loan 
interest rate offered by banks 

Employment  SSCRA 
Non-

stationary 
2003M1-
Present 

Number of hired employees 

Nominal Wage SSCRA 
Non-

stationary 
2003M1-
Present 

Average nominal wage in the 
country 

Catering and paid 
services 

SSCRA 
Non-

stationary 
2003M1-
Present 

Sum of nominal volume expenditure 
on catering and paid services 

Trade turnover SSCRA 
Non-

stationary 
2003M1-
Present 

Volume of nominal trade turnover 

Brent oil - 
Exogenous variable 

EIA 
Non-

stationary 
2003M1-
Present 

Average monthly nominal Brent oil 
price 
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Appendix D: Inverse Roots of AR Characteristic Polynomial for incremental models 

       Litterman/Minnesota Model 1        Litterman/Minnesota Model 2        Litterman/Minnesota Model 3         Litterman/Minnesota Model 4 

  
 

Litterman/Minnesota Model 5         Litterman/Minnesota Optimal Model         Sim-Zha (NW) Model 1            Sim-Zha (NW) Model 2 

   
 

  Sims-Zha (NW) Model 3                    Sims-Zha (NW) Model 4            Sims-Zha (NW) Model 5            Sims-Zha (NW) Optimal Model 

   
 

                  VAR Model 1                              VAR Model 2       VAR Model 3                     VAR Model 4 

       
 

            VAR Model 5          VAR Model 5 

 




